Action potential generation at an axon initial segment-like process in the axonless retinal AII amacrine cell

无轴突视网膜 AII 无长突细胞轴突起始节状突起处的动作电位产生

阅读:4
作者:Chaowen Wu, Elena Ivanova, Jinjuan Cui, Qi Lu, Zhuo-Hua Pan

Abstract

In axon-bearing neurons, action potentials conventionally initiate at the axon initial segment (AIS) and are important for neuron excitability and cell-to-cell communication. However in axonless neurons, spike origin has remained unclear. Here we report in the axonless, spiking AII amacrine cell of the mouse retina a dendritic process sharing organizational and functional similarities with the AIS. This process was revealed through viral-mediated expression of channelrhodopsin-2-GFP with the AIS-targeting motif of sodium channels (Na(v)II-III). The AII processes showed clustering of voltage-gated Na+ channel 1.1 (Na(v)1.1) as well as AIS markers ankyrin-G and neurofascin. Furthermore, Na(v)II-III targeting disrupted Na(v)1.1 clustering in the AII process, which drastically decreased Na+ current and abolished the ability of the AII amacrine cell to generate spiking. Our findings indicate that, despite lacking an axon, spiking in the axonless neuron can originate at a specialized AIS-like process.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。