Human papillomavirus type 16 E6 and NFX1-123 mislocalize immune signaling proteins and downregulate immune gene expression in keratinocytes

人乳头瘤病毒 16 型 E6 和 NFX1-123 错误定位免疫信号蛋白并下调角质形成细胞中的免疫基因表达

阅读:9
作者:Justine Levan, Portia A Vliet-Gregg, Kristin L Robinson, Rachel A Katzenellenbogen

Abstract

Human papillomavirus (HPV) is the most prevalent sexually transmitted infection, affecting an estimated 11% of the world's population. The high-risk HPV types (HR HPV) account for approximately 5% of the global burden of cancer and thus cause high morbidity and mortality. Although it is known that persistent infection with HR HPV is the greatest risk factor for developing HPV-associated cancer, and that the HPV early proteins E6 and E7 dysregulate immune detection by its host cells, the mechanisms of immune evasion by HR HPV are not well understood. Previous work in the laboratory identified the endogenous cytoplasmic host protein NFX1-123 as a binding partner of the HR HPV type 16 oncoprotein E6 (16E6). Together NFX1-123 and 16E6 affect cellular growth, differentiation, and immortalization genes and pathways. In a whole genome microarray, human foreskin keratinocytes (HFKs) stably expressing 16E6 and overexpressing NFX1-123 showed a diverse set of innate immune genes downregulated two-fold or more when compared to 16E6 cells with endogenous NFX1-123. We demonstrated that 16E6 and NFX1-123 decreased expression of pro-inflammatory cytokines and interferon-stimulated genes (ISGs) in 16E6 HFKs at the mRNA and protein level. Knock down of NFX1-123 in 16E6 HFKs resulted in a derepression of innate immune genes, pointing to the requirement of NFX1-123 for immune regulation in the context of 16E6. Studies using immunofluorescent microscopy revealed that 16E6 and NFX1-123 disturbed the normal localization of signaling proteins involved in initiating the immune response. This study identifies NFX1-123 as a critical host protein partner through which 16E6 is able to subvert the immune response and in turn permit a long-lived HR HPV infection.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。