Extremophilic 50S Ribosomal RNA-Binding Protein L35Ae as a Basis for Engineering of an Alternative Protein Scaffold

嗜极微生物 50S 核糖体 RNA 结合蛋白 L35Ae 作为替代蛋白质支架工程的基础

阅读:5
作者:Anna V Lomonosova, Elena V Ovchinnikova, Alexei S Kazakov, Alexander I Denesyuk, Alexander D Sofin, Roman V Mikhailov, Andrei B Ulitin, Tajib A Mirzabekov, Eugene A Permyakov, Sergei E Permyakov

Abstract

Due to their remarkably high structural stability, proteins from extremophiles are particularly useful in numerous biological applications. Their utility as alternative protein scaffolds could be especially valuable in small antibody mimetic engineering. These artificial binding proteins occupy a specific niche between antibodies and low molecular weight substances, paving the way for development of innovative approaches in therapeutics, diagnostics, and reagent use. Here, the 50S ribosomal RNA-binding protein L35Ae from the extremophilic archaea Pyrococcus horikoshii has been probed for its potential to serve as a backbone in alternative scaffold engineering. The recombinant wild type L35Ae has a native-like secondary structure, extreme thermal stability (mid-transition temperature of 90°C) and a moderate resistance to the denaturation by guanidine hydrochloride (half-transition at 2.6 M). Chemical crosslinking and dynamic light scattering data revealed that the wild type L35Ae protein has a propensity for multimerization and aggregation correlating with its non-specific binding to a model cell surface of HEK293 cells, as evidenced by flow cytometry. To suppress these negative features, a 10-amino acid mutant (called L35Ae 10X) was designed, which lacks the interaction with HEK293 cells, is less susceptible to aggregation, and maintains native-like secondary structure and thermal stability. However, L35Ae 10X also shows lowered resistance to guanidine hydrochloride (half-transition at 2.0M) and is more prone to oligomerization. This investigation of an extremophile protein's scaffolding potential demonstrates that lowered resistance to charged chemical denaturants and increased propensity to multimerization may limit the utility of extremophile proteins as alternative scaffolds.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。