Activation of the Wnt/β-catenin signaling pathway by mechanical ventilation is associated with ventilator-induced pulmonary fibrosis in healthy lungs

机械通气激活 Wnt/β-catenin 信号通路与健康肺部呼吸机诱发的肺纤维化有关

阅读:4
作者:Jesús Villar, Nuria E Cabrera, Francisco Valladares, Milena Casula, Carlos Flores, Lluís Blanch, María Elisa Quilez, Norberto Santana-Rodríguez, Robert M Kacmarek, Arthur S Slutsky

Background

Mechanical ventilation (MV) with high tidal volumes (V(T)) can cause or aggravate lung damage, so-called ventilator induced lung injury (VILI). The relationship between specific mechanical events in the lung and the cellular responses that result in VILI remains incomplete. Since activation of Wnt/β-catenin signaling has been suggested to be central to mechanisms of lung healing and fibrosis, we hypothesized that the Wnt/β-catenin signaling plays a role during VILI. Methodology/principal findings: Prospective, randomized, controlled animal study using adult, healthy, male Sprague-Dawley rats. Animals (n = 6/group) were randomized to spontaneous breathing or two strategies of MV for 4 hours: low tidal volume (V(T)) (6 mL/kg) or high V(T) (20 mL/kg). Histological evaluation of lung tissue, measurements of WNT5A, total β-catenin, non-phospho (Ser33/37/Thr41) β-catenin, matrix metalloproteinase-7 (MMP-7), cyclin D1, vascular endothelial growth factor (VEGF), and axis inhibition protein 2 (AXIN2) protein levels by Western blot, and WNT5A, non-phospho (Ser33/37/Thr41) β-catenin, MMP-7, and AXIN2 immunohistochemical localization in the lungs were analyzed. High-V(T) MV caused lung inflammation and perivascular edema with cellular infiltrates and collagen deposition. Protein levels of WNT5A, non-phospho (Ser33/37/Thr41) β-catenin, MMP-7, cyclin D1, VEGF, and AXIN2 in the lungs were increased in all ventilated animals although high-V(T) MV was associated with significantly higher levels of WNT5A, non-phospho (Ser33/37/Thr41) β-catenin, MMP-7, cyclin D1, VEGF, and AXIN2 levels. Conclusions/significance: Our findings demonstrate that the Wnt/β-catenin signaling pathway is modulated very early by MV in lungs without preexistent lung disease, suggesting that activation of this pathway could play an important role in both VILI and lung repair. Modulation of this pathway might represent a therapeutic option for prevention and/or management of VILI.

Significance

Our findings demonstrate that the Wnt/β-catenin signaling pathway is modulated very early by MV in lungs without preexistent lung disease, suggesting that activation of this pathway could play an important role in both VILI and lung repair. Modulation of this pathway might represent a therapeutic option for prevention and/or management of VILI.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。