Constitutive STAT5 phosphorylation in CD34+ cells of patients with primary myelofibrosis: Correlation with driver mutation status and disease severity

原发性骨髓纤维化患者 CD34+ 细胞中的组成性 STAT5 磷酸化:与驱动突变状态和疾病严重程度的相关性

阅读:7
作者:Carlotta Abbà, Rita Campanelli, Paolo Catarsi, Laura Villani, Vittorio Abbonante, Melania Antonietta Sesta, Giovanni Barosi, Vittorio Rosti, Margherita Massa

Abstract

Primary Myelofibrosis (PMF) is a myeloproliferative disorder associated with JAK2V617F, Calreticulin (CALR) indels, and MPLW515L/K mutations activating the tyrosine kinase JAK2 and its downstream signaling pathway. The nature of signaling abnormalities in primary cells from PMF patients is poorly understood, since most of the work has been performed in cell lines or animal models. By flow cytometry we measured constitutive and cytokine induced phosphorylation of STAT5, STAT3, and ERK1/2 in circulating CD34+ cells from 57 patients with PMF (20 with prefibrotic-PMF) and 13 healthy controls (CTRLs). Levels of constitutive and TPO induced p-STAT5, and IL6 induced p-STAT3 were higher in patients than in CTRLs. Constitutive p-STAT5 values were lower in CALR than homozygous JAK2V617F mutated CD34+ cells from PMF patients. Moreover, constitutive p-STAT5 and IL6 induced p-STAT3 values correlated directly with circulating CD34+ cell number/L, and inversely with the frequency of circulating CD34+ cells expressing CXCR4. Constitutive p-STAT5 values of CD34+ cells were also inversely correlated with hemoglobin levels. When the patients were divided according with presence/absence of JAK2V617F mutation, all the correlations described characterized the JAK2V617F+ patients with prefibrotic-PMF (P-PMF). In conclusion, increased constitutive p-STAT5 and IL6 induced p-STAT3 values in circulating CD34+ cells characterize patients with PMF. Constitutive p-STAT5 and IL6 induced p-STAT3 values correlate with circulating CD34+ cell number/L, the frequency of circulating CD34+ cells expressing CXCR4 and hemoglobin levels within the prefibrotic JAK2V617F+ patient population. Our data point toward a complex activation of STAT5-dependent pathways in the stem/progenitor cell compartment, that characterize the phenotypic diversity of PMF.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。