Xianling Gubao attenuates high glucose-induced bone metabolism disorder in MG63 osteoblast-like cells

仙灵骨葆减轻高糖诱导的MG63成骨样细胞骨代谢紊乱

阅读:8
作者:Xinlong Chen, Yan Li, Zhongwen Zhang, Liping Chen, Yaqian Liu, Shuhong Huang, Xiaoqian Zhang

Abstract

Diabetes mellitus (DM) patients are prone to osteoporosis, and high glucose (HG) can affect bone metabolism. In the present study, we investigated the protective effects of traditional Chinese herbal formulation Xianling Gubao (XLGB) on HG-treated MG63 osteoblast-like cells. MG63 cells were incubated with control (mannitol), HG (20 mM glucose) or HG + XLGB (20 mM glucose+200 mg/L XLGB) mediums. Cell proliferation, apoptosis, migration and invasion were examined using CCK8, colony-formation, flow cytometry, Hoechst/PI staining, wound-healing and transwell assays, respectively. ELISA, RT-PCR and western blot analysis were used to detect the levels of osteogenesis differentiation-associated markers such as ALP, OCN, OPN, RUNX2, OPG, and OPGL in MG63 cells. The levels of the PI3K/Akt signaling pathway related proteins, cell cycle-related proteins, and mitochondrial apoptosis-related proteins were detected using western blot analysis. In HG-treated MG63 cells, XLGB significantly attenuated the suppression on the proliferation, migration and invasion of MG63 cells caused by HG. HG downregulated the activation of the PI3K/Akt signaling pathway and the expressions of cell cycle-related proteins, while XLGB reversed the inhibition of HG on MG63 cells. Moreover, XLGB significantly reduced the promotion on the apoptosis of MG63 cells induced by HG, the expressions of mitochondrial apoptosis-related proteins were suppressed by XLGB treatment. In addition, the expressions of osteogenesis differentiation-associated proteins were also rescued by XLGB in HG-treated MG63 cells. Our data suggest that XLGB rescues the MG63 osteoblasts against the effect of HG. The potential therapeutic mechanism of XLGB partially attributes to inhibiting the osteoblast apoptosis and promoting the bone formation of osteoblasts.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。