Precise Long-Range Microcircuit-to-Microcircuit Communication Connects the Frontal and Sensory Cortices in the Mammalian Brain

精确的长距离微电路到微电路通信连接哺乳动物大脑的额叶皮层和感觉皮层

阅读:6
作者:Si-Qiang Ren, Zhizhong Li, Susan Lin, Matteo Bergami, Song-Hai Shi

Abstract

The frontal area of the cerebral cortex provides long-range inputs to sensory areas to modulate neuronal activity and information processing. These long-range circuits are crucial for accurate sensory perception and complex behavioral control; however, little is known about their precise circuit organization. Here we specifically identified the presynaptic input neurons to individual excitatory neuron clones as a unit that constitutes functional microcircuits in the mouse sensory cortex. Interestingly, the long-range input neurons in the frontal but not contralateral sensory area are spatially organized into discrete vertical clusters and preferentially form synapses with each other over nearby non-input neurons. Moreover, the assembly of distant presynaptic microcircuits in the frontal area depends on the selective synaptic communication of excitatory neuron clones in the sensory area that provide inputs to the frontal area. These findings suggest that highly precise long-range reciprocal microcircuit-to-microcircuit communication mediates frontal-sensory area interactions in the mammalian cortex.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。