The Novel Cyclophilin Inhibitor CPI-431-32 Concurrently Blocks HCV and HIV-1 Infections via a Similar Mechanism of Action

新型环丝氨酸蛋白酶抑制剂 CPI-431-32 通过类似的作用机制同时阻断 HCV 和 HIV-1 感染

阅读:7
作者:Philippe A Gallay, Michael D Bobardt, Udayan Chatterji, Daniel J Trepanier, Daren Ure, Cosme Ordonez, Robert Foster

Abstract

HCV-related liver disease is the main cause of morbidity and mortality of HCV/HIV-1 co-infected patients. Despite the recent advent of anti-HCV direct acting antivirals (DAAs), the treatment of HCV/HIV-1 co-infected patients remains a challenge, as these patients are refractory to most therapies and develop liver fibrosis, cirrhosis and liver cancer more often than HCV mono-infected patients. Until the present study, there was no suitable in vitro assay to test the inhibitory activity of drugs on HCV/HIV-1 co-infection. Here we developed a novel in vitro "co-infection" model where HCV and HIV-1 concurrently replicate in their respective main host target cells--human hepatocytes and CD4+ T-lymphocytes. Using this co-culture model, we demonstrate that cyclophilin inhibitors (CypI), including a novel cyclosporin A (CsA) analog, CPI-431-32, simultaneously inhibits replication of both HCV and HIV-1 when added pre- and post-infection. In contrast, the HIV-1 protease inhibitor nelfinavir or the HCV NS5A inhibitor daclatasvir only blocks the replication of a single virus in the "co-infection" system. CPI-431-32 efficiently inhibits HCV and HIV-1 variants, which are normally resistant to DAAs. CPI-431-32 is slightly, but consistently more efficacious than the most advanced clinically tested CypI--alisporivir (ALV)--at interrupting an established HCV/HIV-1 co-infection. The superior antiviral efficacy of CPI-431-32 over ALV correlates with its higher potency inhibition of cyclophilin A (CypA) isomerase activity and at preventing HCV NS5A-CypA and HIV-1 capsid-CypA interactions known to be vital for replication of the respective viruses. Moreover, we obtained evidence that CPI-431-32 prevents the cloaking of both the HIV-1 and HCV genomes from cellular sensors. Based on these results, CPI-431-32 has the potential, as a single agent or in combination with DAAs, to inhibit both HCV and HIV-1 infections.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。