LncRNA LINC01018/miR-942-5p/KNG1 axis regulates the malignant development of glioma in vitro and in vivo

LncRNA LINC01018/miR-942-5p/KNG1轴在体内外调控胶质瘤恶性发展

阅读:5
作者:Jinfang Xu, Jianli Wang, Mingfei Zhao, Chenguang Li, Shen Hong, Jianmin Zhang

Aims

Since the inhibitory effect of KNG1 on glioma has been proved, this study further explores the regulation of the lncRNA/miRNA axis on KNG1 in glioma.

Conclusion

LINC01018/miR-942-5p/KNG1 pathway regulates the development of glioma cells in vitro and in vivo.

Methods

The miRNAs that target KNG1 and the lncRNA that targets miR-942-5p were predicted by bioinformatics analysis and verified by experiments. The correlations between miR-942-5p and the survival of patients and between KNG1 and miR-942-5p were analyzed. After transfection, cell migration, invasion, proliferation, and cell cycle were detected through wound healing, Transwell, colony formation, and flow cytometry assays. A mouse subcutaneous xenotransplanted tumor model was established. The expressions of miR-942-5p, KNG1, LINC01018, and related genes were evaluated by quantitative real-time reverse transcription polymerase chain reaction (RT-qPCR), Western blot, or immunohistochemistry.

Results

MiR-942-5p targeted KNG1, and LINC01018 sponged miR-942-5p. The high survival rate of patients was related to low miR-942-5p level. MiR-942-5p was highly expressed, whereas KNG1 was lowly expressed in glioma. MiR-942-5p was negatively correlated with KNG1. Silent LINC01018 or KNG1 and miR-942-5p mimic enhanced the migration, invasion, and proliferation of glioma cells, and regulated the expressions of metastasis-related and proliferation-related genes. LINC01018 knockdown and miR-942-5p mimic promoted glioma tumor growth in mice. The levels of miR-942-5p and KNG1 were decreased by LINC01018 knockdown, and LINC01018 expression was suppressed by miR-942-5p mimic. MiR-942-5p inhibitor, KNG1, and LINC01018 had the opposite effect to miR-942-5p mimic.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。