Sonodynamic therapy suppresses matrix collagen degradation in vulnerable atherosclerotic plaque by modulating caspase 3 - PEDF/HIF-1α - MMP-2/MMP-9 signaling in macrophages

声动力疗法通过调节巨噬细胞中的 caspase 3 - PEDF/HIF-1α - MMP-2/MMP-9 信号传导来抑制易损动脉粥样硬化斑块中的基质胶原降解

阅读:7
作者:Yanfeng Tian, Siqi Sheng, Weiwei Gao, Jianting Yao, Ye Tian

Background

The rupture of vulnerable atherosclerotic plaque is the main cause of acute ischemic vascular events, and is characterized by pathological degradation of matrix collagen in the fibrous cap. In a previous study, we reported that 5-aminolevulinic acid-mediated sonodynamic therapy suppressed collagen degradation in rabbit plaque. However, the underlying molecular mechanism has yet to be fully elucidated.

Conclusions

Our findings show that DVDMS-SDT effectively inhibits matrix collagen degradation in advanced atherosclerotic plaque by modulating caspase 3-PEDF/HIF-1α-MMP-2/MMP-9 signaling in macrophage foam cells and therefore represents a suitable and promising clinical regimen to stabilize vulnerable plaques.

Methods

We applied sinoporphyrin sodium-mediated sonodynamic therapy (DVDMS-SDT) to balloon-denuded rabbit and apolipoprotein E-deficient (ApoE-/-) mouse models to observe collagen content in plaque. Cultured human THP-1 and mouse peritoneal macrophage-derived foam cells were used for in vitro mechanistic studies.

Results

We observed that DVDMS-SDT decreased plaque area and increased the percentages of collagen and smooth muscle cells and reduced the percentage of macrophages in rabbit and ApoE-/- mouse advanced plaques. In vitro, DVDMS-SDT modulated the caspase 3-pigment epithelium-derived factor/hypoxia-inducible factor-1α (PEDF/HIF-1α)-matrix metalloprotease-2/9 (MMP-2/MMP-9) signaling in macrophage foam cells. Conclusions: Our findings show that DVDMS-SDT effectively inhibits matrix collagen degradation in advanced atherosclerotic plaque by modulating caspase 3-PEDF/HIF-1α-MMP-2/MMP-9 signaling in macrophage foam cells and therefore represents a suitable and promising clinical regimen to stabilize vulnerable plaques.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。