The mechanism and candidate compounds of aged citrus peel (chenpi) preventing chronic obstructive pulmonary disease and its progression to lung cancer

陈皮预防慢性阻塞性肺病及其进展为肺癌的机制及候选化合物

阅读:3
作者:Lin Zhou, Wenwen Gu, Fuguang Kui, Fan Gao, Yuji Niu, Wenwen Li, Yaru Zhang, Lijuan Guo, Junru Wang, Zhenzhen Guo, Gangjun Du

Background

Chronic obstructive pulmonary disease (COPD) is an important risk factor for developing lung cancer. Aged citrus peel (chenpi) has been used as a dietary supplement for respiratory diseases in China.

Conclusion

Hesperetin is a candidate compound of chenpi that helps in preventing COPD and its progression to lung cancer by regulating AKT1, IL6, VEGFA, MMP9 and TP53.

Methods

The active components and potential targets of chenpi were retrieved from the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database. Disease-associated targets of COPD and lung cancer were collected in the Gene Cards and TTD database. The component-target network and PPI network were constructed using the Cytoscape 3.8.0 software. David database was used for GO and KEGG enrichment analysis. The main active components were verified by using the autodock Vina 1.1.2 software. Mouse lung cancer with COPD was induced by cigarette smoking (CS) combined with urethane injection to confirm preventing the effect of hesperetin (the candidate compound of chenpi) on COPD progression to lung cancer and its underlying mechanisms.

Objective

To explore the mechanism and candidate compounds of chenpi preventing COPD and its progression to lung cancer.

Results

The network analysis revealed that the key active components of chenpi (nobiletin, naringenin, hesperetin) regulate five core targets (AKT1, TP53, IL6, VEGFA, MMP9). In addition, 103 potential pathways of chenpi were identified. Chenpi can prevent COPD and its progression to lung cancer by getting involved in the PI3K-Akt signaling pathway and MAPK signaling pathway. Molecular docking indicated that hesperetin had better binding activity for core targets. In mouse lung cancer with COPD, treatment with hesperetin dose-dependently improved not only lung tissue injury in COPD but also carcinoma lesions in lung cancer. Meanwhile, hesperetin could suppress the protein expression of AKT1, IL6, VEGFA, MMP9 and up-regulate the protein expression of TP53, and thus reduced the risk of COPD progression to lung cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。