Octanoylation of early intermediates of mycobacterial methylglucose lipopolysaccharides

分枝杆菌甲基葡萄糖脂多糖早期中间体的辛酰化

阅读:7
作者:Ana Maranha, Patrick J Moynihan, Vanessa Miranda, Eva Correia Lourenço, Daniela Nunes-Costa, Joana S Fraga, Pedro José Barbosa Pereira, Sandra Macedo-Ribeiro, M Rita Ventura, Anthony J Clarke, Nuno Empadinhas

Abstract

Mycobacteria synthesize unique intracellular methylglucose lipopolysaccharides (MGLP) proposed to modulate fatty acid metabolism. In addition to the partial esterification of glucose or methylglucose units with short-chain fatty acids, octanoate was invariably detected on the MGLP reducing end. We have identified a novel sugar octanoyltransferase (OctT) that efficiently transfers octanoate to glucosylglycerate (GG) and diglucosylglycerate (DGG), the earliest intermediates in MGLP biosynthesis. Enzymatic studies, synthetic chemistry, NMR spectroscopy and mass spectrometry approaches suggest that, in contrast to the prevailing consensus, octanoate is not esterified to the primary hydroxyl group of glycerate but instead to the C6 OH of the second glucose in DGG. These observations raise important new questions about the MGLP reducing end architecture and about subsequent biosynthetic steps. Functional characterization of this unique octanoyltransferase, whose gene has been proposed to be essential for M. tuberculosis growth, adds new insights into a vital mycobacterial pathway, which may inspire new drug discovery strategies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。