Photobiomodulation (800 nm Light-Emitting Diode) Treatment Promotes Bone Mesenchymal Stem Cell Proliferation Via Long Noncoding RNA MEG3-MicroRNA-217-5P Pathway

光生物调节(800 nm 发光二极管)治疗通过长链非编码 RNA MEG3-MicroRNA-217-5P 通路促进骨髓间充质干细胞增殖

阅读:7
作者:Na Liu, Lan Cao, Lei Peng, Weiwei Lu, Xiaolin Dai, Shengyu Wang, Guangqiong Guo, Xiaowen Qu, Ying Xu, Chongtao Zhu

Background

Patients with osteoporosis (OP) have a high risk of bone fracture. Abnormal bone mesenchymal stem cell (BMSC) differentiation is an essential process of OP development. In recent years, photobiomodulation has been shown to effectively promote BMSC proliferation. However, the mechanism by which photobiomodulation promotes BMSC proliferation is unclear. Long noncoding RNAs (lncRNAs) are essential mediators in multiple biological processes. The lncRNA maternally expressed gene 3 (MEG3) is a novel lncRNA gene and is related to cell proliferation. Studies have indicated that MEG3 serves as a promotor in BMSC proliferation.

Conclusions

The current study revealed the MEG3-related mechanism of photobiomodulation treatment in OP and identified potential gene therapies for OP.

Methods

The BMSCs collected from mouse tibias and femurs were irradiated by 800 nm LED for 180 sec. CCK-8 assay was used to detect the cell viability. A dual-luciferase reporter assay was used to determine IncRNA MEG3 acted as a miR-217-5p sponge. We used reverse transcription-polymerase chain reaction (RT-PCR) and western blot to detect the mRNA and protein levels of MEG3, miR-217-5p, Notch2, Hes1, Hey2.

Objective

To investigate the effects and mechanisms of 800 nm light-emitting diode (LED) photobiomodulation in BMSC proliferation. Materials and

Results

In the present study, we revealed that photobiomodulation (800 nm LED) could increase the mRNA level of MEG3, and protein levels of Notch2, Hes1, and Hey2. Moreover, we also identified that upregulated MEG3 could act as a miR-217-5p sponge to activate the Notch signaling pathway. Conclusions: The current study revealed the MEG3-related mechanism of photobiomodulation treatment in OP and identified potential gene therapies for OP.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。