Cortical layer 1 and layer 2/3 astrocytes exhibit distinct calcium dynamics in vivo

皮质层 1 和层 2/3 星形胶质细胞在体内表现出不同的钙动力学

阅读:5
作者:Norio Takata, Hajime Hirase

Abstract

Cumulative evidence supports bidirectional interactions between astrocytes and neurons, suggesting glial involvement of neuronal information processing in the brain. Cytosolic calcium (Ca(2+)) concentration is important for astrocytes as Ca(2+) surges co-occur with gliotransmission and neurotransmitter reception. Cerebral cortex is organized in layers which are characterized by distinct cytoarchitecture. We asked if astrocyte-dominant layer 1 (L1) of the somatosensory cortex was different from layer 2/3 (L2/3) in spontaneous astrocytic Ca(2+) activity and if it was influenced by background neural activity. Using a two-photon laser scanning microscope, we compared spontaneous Ca(2+) activity of astrocytic somata and processes in L1 and L2/3 of anesthetized mature rat somatosensory cortex. We also assessed the contribution of background neural activity to the spontaneous astrocytic Ca(2+) dynamics by investigating two distinct EEG states ("synchronized" vs. "de-synchronized" states). We found that astrocytes in L1 had nearly twice higher Ca(2+) activity than L2/3. Furthermore, Ca(2+) fluctuations of processes within an astrocyte were independent in L1 while those in L2/3 were synchronous. Pharmacological blockades of metabotropic receptors for glutamate, ATP, and acetylcholine, as well as suppression of action potentials did not have a significant effect on the spontaneous somatic Ca(2+) activity. These results suggest that spontaneous astrocytic Ca(2+) surges occurred in large part intrinsically, rather than neural activity-driven. Our findings propose a new functional segregation of layer 1 and 2/3 that is defined by autonomous astrocytic activity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。