Cortical tau burden and behavioural dysfunctions in mice exposed to monosodium glutamate in early life

早期暴露于谷氨酸钠的小鼠的皮质 tau 负担和行为功能障碍

阅读:5
作者:Passainte S Hassaan, Abeer E Dief, Teshreen M Zeitoun, Azza M Baraka, Robert M J Deacon, Amany Elshorbagy

Abstract

Although monosodium glutamate (MSG)-induced neurotoxicity has been recognized for decades, the potential similarities of the MSG model to Alzheimer's disease (AD)-type neuropathology have only recently been investigated. MSG-treated mice were examined behaviourally and histologically in relation to some features of AD. Four-week old mice received 5 subcutaneous MSG (2 g/kg) injections on alternate days, or saline. At age 10-12 weeks, they were given a battery of behavioural tests for species-typical behaviours and working memory. The mice were killed at 12 weeks and the brains excised. Accumulation of hyperphosphorylated tau protein was assessed in cortical and hippocampal neurons by immunohistochemistry, and in cerebral cortical homogenates. A 78% increase in cortical concentrations of phosphorylated tau protein was observed in the MSG mice. Intracellular hyperphosphorylated tau immunostaining was observed diffusely in the cortex and hippocampus, together with cortical atrophic neurons, extensive vacuolation and dysmorphic neuropil suggestive of spongiform neurodegeneration. Nest-building was significantly impaired, and spontaneous T-maze alternation was reduced, suggesting defective short-term working memory. Subcutaneous MSG treatment also induced a 56% reduction in exploratory head dips in a holeboard (P = 0.009), and a non-significant tendency for decreased burrowing behaviour (P = 0.085). These effects occurred in the absence of MSG-induced obesity or gross locomotor deficits. The findings point to subcutaneous MSG administration in early life as a cause of tau pathology and compromised species-typical behaviour in rodents. Determining whether MSG can be useful in modelling AD requires further studies of longer duration and full behavioural characterization.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。