Urinary proteomics links keratan sulfate degradation and lysosomal enzymes to early type 1 diabetes

尿液蛋白质组学将硫酸角质素降解和溶酶体酶与早期 1 型糖尿病联系起来

阅读:7
作者:Julie A D Van, Sergi Clotet-Freixas, Anne-Christin Hauschild, Ihor Batruch, Igor Jurisica, Yesmino Elia, Farid H Mahmud, Etienne Sochett, Eleftherios P Diamandis, James W Scholey, Ana Konvalinka

Abstract

Diabetes is the leading cause of end-stage renal disease worldwide. Our understanding of the early kidney response to chronic hyperglycemia remains incomplete. To address this, we first investigated the urinary proteomes of otherwise healthy youths with and without type 1 diabetes and subsequently examined the enriched pathways that might be dysregulated in early disease using systems biology approaches. This cross-sectional study included two separate cohorts for the discovery (N = 30) and internal validation (N = 30) of differentially excreted proteins. Discovery proteomics was performed on a Q Exactive Plus hybrid quadrupole-orbitrap mass spectrometer. We then searched the pathDIP, KEGG, and Reactome databases to identify enriched pathways in early diabetes; the Integrated Interactions Database to retrieve protein-protein interaction data; and the PubMed database to compare fold changes of our signature proteins with those published in similarly designed studies. Proteins were selected for internal validation based on pathway enrichment and availability of commercial enzyme-linked immunosorbent assay kits. Of the 2451 proteins identified, 576 were quantified in all samples from the discovery cohort; 34 comprised the urinary signature for early diabetes after Benjamini-Hochberg adjustment (Q < 0.05). The top pathways associated with this signature included lysosome, glycosaminoglycan degradation, and innate immune system (Q < 0.01). Notably, all enzymes involved in keratan sulfate degradation were significantly elevated in urines from youths with diabetes (|fold change| > 1.6). Increased urinary excretion of monocyte differentiation antigen CD14, hexosaminidase A, and lumican was also observed in the validation cohort (P < 0.05). Twenty-one proteins from our signature have been reported elsewhere as potential mediators of early diabetes. In this study, we identified a urinary proteomic signature for early type 1 diabetes, of which lysosomal enzymes were major constituents. Our findings highlight novel pathways such as keratan sulfate degradation in the early kidney response to hyperglycemia.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。