Neuronal loss of Drosophila NPC1a causes cholesterol aggregation and age-progressive neurodegeneration

果蝇 NPC1a 神经元丢失导致胆固醇聚集和年龄渐进性神经退化

阅读:4
作者:Scott E Phillips, E A Woodruff 3rd, Ping Liang, Meaghan Patten, Kendal Broadie

Abstract

The mistrafficking and consequent cytoplasmic accumulation of cholesterol and sphingolipids is linked to multiple neurodegenerative diseases. One class of disease, the sphingolipid storage diseases, includes Niemann-Pick disease type C (NPC), caused predominantly (95%) by mutation of the NPC1 gene. A disease model has been established through mutation of Drosophila NPC1a (dnpc1a). Null mutants display early lethality attributable to loss of cholesterol-dependent ecdysone steroid hormone production. Null mutants rescued to adults by restoring ecdysone production mimic human NPC patients with progressive motor defects and reduced life spans. Analysis of dnpc1a null brains shows elevated overall cholesterol levels and progressive accumulation of filipin-positive cholesterol aggregates within brain and retina, as well as isolated cultured brain neurons. Ultrastructural imaging of dnpc1a mutant brains reveals age-progressive accumulation of striking multilamellar and multivesicular organelles, preceding the onset of neurodegeneration. Consistently, electroretinogram recordings show age-progressive loss of phototransduction and photoreceptor synaptic transmission. Early lethality, movement impairments, neuronal cholesterol deposits, accumulation of multilamellar bodies, and age-dependent neurodegeneration are all rescued by targeted neuronal expression of a wild-type dnpc1a transgene. Interestingly, targeted expression of dnpc1a in glia also provides limited rescue of adult lethality. Generation of dnpc1a null mutant neuron clones in the brain reveals cell-autonomous requirements for dNPC1a in cholesterol and membrane trafficking. These data demonstrate a requirement for dNPC1a in the maintenance of neuronal function and viability and show that loss of dNPC1a in neurons mimics the human neurodegenerative condition.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。