Environmental cadmium impairs blood-testis barrier via activating HRI-responsive mitochondrial stress in mice

环境镉通过激活小鼠 HRI 反应性线粒体应激损害血睾屏障

阅读:13
作者:Guo-Xiang Zhou, Wei-Bo Liu, Li-Min Dai, Hua-Long Zhu, Yong-Wei Xiong, Dai-Xin Li, De-Xiang Xu, Hua Wang

Abstract

Cadmium (Cd) is a well-known testicular toxicant. Blood-testis barrier (BTB), a vital part of testes, which has been reported to be damaged upon Cd exposure. However, the detailed mechanism about Cd-mediated disruption of BTB remains unclear. This study aims to investigate the role of Heme-Regulated Inhibitor (HRI)-responsive mitochondrial stress in Cd-mediated disruption of BTB. Male mice are intraperitoneally injected (i.p.) with melatonin (Mel, a cellular stress antagonist, 5.0 mg/kg) before Cd treatment (i.p., 2.0 mg/kg) for 8 h, and then treated with Cd for 0-48 h. Mouse Sertoli cells are pretreated with Mel (10 μM) for 1 h, and then treated with Cd (10 μM) for 0-24 h. We find that Cd damages the BTB and reduces the Occludin protein, a crucial BTB-related protein via activating p38/matrix metalloproteinase-2 (p38/MMP2) pathway and Integrated Stress Response (ISR). Further experiments reveal that the Heme-Regulated Inhibitor (HRI)-responsive mitochondrial stress is triggered in Cd-treated Sertoli cells. Most importantly, Cd-activated p38 signaling and ISR are regulated by HRI-responsive mitochondrial stress in Sertoli cells. Unexpectedly, we find that melatonin rescues the Cd-mediated disruption of BTB through blocking HRI-responsive mitochondrial stress in testes. Overall, these data indicate that environmental cadmium exposure impairs the BTB through activating HRI-responsive mitochondrial stress in Sertoli cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。