A Layered, Hybrid Machine Learning Analytic Workflow for Mouse Risk Assessment Behavior

用于小鼠风险评估行为的分层混合机器学习分析工作流程

阅读:5
作者:Jinxin Wang, Paniz Karbasi, Liqiang Wang, Julian P Meeks

Abstract

Accurate and efficient quantification of animal behavior facilitates the understanding of the brain. An emerging approach within machine learning (ML) field is to combine multiple ML-based algorithms to quantify animal behavior. These so-called hybrid models have emerged because of limitations associated with supervised [e.g., random forest (RF)] and unsupervised [e.g., hidden Markov model (HMM)] ML models. For example, RF models lack temporal information across video frames, and HMM latent states are often difficult to interpret. We sought to develop a hybrid model, and did so in the context of a study of mouse risk assessment behavior. We used DeepLabCut to estimate the positions of mouse body parts. Positional features were calculated using DeepLabCut outputs and were used to train RF and HMM models with equal number of states, separately. The per-frame predictions from RF and HMM models were then passed to a second HMM model layer ("reHMM"). The outputs of the reHMM layer showed improved interpretability over the initial HMM output. Finally, we combined predictions from RF and HMM models with selected positional features to train a third HMM model ("reHMM+"). This reHMM+ layered hybrid model unveiled distinctive temporal and human-interpretable behavioral patterns. We applied this workflow to investigate risk assessment to trimethylthiazoline and snake feces odor, finding unique behavioral patterns to each that were separable from attractive and neutral stimuli. We conclude that this layered, hybrid ML workflow represents a balanced approach for improving the depth and reliability of ML classifiers in chemosensory and other behavioral contexts.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。