SARS-CoV-2 mRNA vaccination elicits robust antibody responses in children

SARS-CoV-2 mRNA 疫苗接种在儿童中引发强烈抗体反应

阅读:4
作者:Yannic C Bartsch, Kerri J St Denis, Paulina Kaplonek, Jaewon Kang, Evan C Lam, Madeleine D Burns, Eva J Farkas, Jameson P Davis, Brittany P Boribong, Andrea G Edlow, Alessio Fasano, Wayne G Shreffler, Dace Zavadska, Marina Johnson, David Goldblatt, Alejandro B Balazs, Lael M Yonker, Galit Alter

Abstract

Although children have been largely spared from coronavirus disease 2019 (COVID-19), the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) with increased transmissibility, combined with fluctuating mask mandates and school reopenings, has led to increased infections and disease among children. Thus, there is an urgent need to roll out COVID-19 vaccines to children of all ages. However, whether children respond equivalently to adults to mRNA vaccines and whether dosing will elicit optimal immunity remain unclear. Here, we aimed to deeply profile the vaccine-induced humoral immune response in 6- to 11-year-old children receiving either a pediatric (50 μg) or adult (100 μg) dose of the mRNA-1273 vaccine and to compare these responses to vaccinated adults, infected children, and children who experienced multisystem inflammatory syndrome in children (MIS-C). Children elicited an IgG-dominant vaccine-induced immune response, surpassing adults at a matched 100-μg dose but more variable immunity at a 50-μg dose. Irrespective of titer, children generated antibodies with enhanced Fc receptor binding capacity. Moreover, like adults, children generated cross-VOC humoral immunity, marked by a decline of omicron-specific receptor binding domain, but robustly preserved omicron spike protein binding. Fc receptor binding capabilities were also preserved in a dose-dependent manner. These data indicate that both the 50- and 100-μg doses of mRNA vaccination in children elicit robust cross-VOC antibody responses and that 100-μg doses in children result in highly preserved omicron-specific functional humoral immunity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。