Nicotinic acetylcholine receptor stability at the NMJ deficient in α-syntrophin in vivo

体内缺乏 α-syntrophin 的 NMJ 烟碱乙酰胆碱受体稳定性

阅读:7
作者:Isabel Martinez-Pena y Valenzuela, Chakib Mouslim, Marcelo Pires-Oliveira, Marvin E Adams, Stanley C Froehner, Mohammed Akaaboune

Abstract

α-Syntrophin (α-syn), a scaffold protein, links signaling molecules to the dystrophin-glycoprotein complex. Absence of α-syn from the DGC is known to lead to structurally aberrant neuromuscular junctions (NMJs) with few acetylcholine receptors (AChRs) clustered at synaptic sites. Using α-syn knock-out mice, we show that during the first postnatal week, α-syn is not required for synapse formation. However, at postnatal day 6 (P6)-P7, the structural integrity of the postsynaptic apparatus is altered, the turnover rate of AChRs increases significantly, and the number/density of AChRs is impaired. At the adult α-syn(-/-) NMJ, the turnover rate of AChRs is ∼ 4 times faster than wild-type synapses, and most removed receptors are targeted to degradation as few AChRs recycled to synaptic sites. Biochemical analyses show that in muscle cells of adult knock-out α-syn mice, total AChRs and scaffold protein rapsyn are significantly reduced, the 89 kDa and 75 kDa isoforms of tyrosine phosphorylated α-dystrobrevin (α-dbn) 1 (which are required for the maintenance and stability of AChR in α-dbn(-/-) synapses) are barely detectable. Electroporation of GFP-α-dbn1 in α-syn(-/-) muscle cells partially restored receptor density, turnover rate, and the structural integrity of the postsynaptic apparatus, whereas expression of rapsyn-GFP failed to rescue the α-syn(-/-) synaptic phenotype. These results demonstrate that α-syn is required for the maturation and stability of the postsynaptic apparatus and suggest that α-syn may act via α-dbn1.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。