Ring Finger Protein 11 (RNF11) Modulates Dopamine Release in Drosophila

环指蛋白 11 (RNF11) 调节果蝇的多巴胺释放

阅读:7
作者:Eve Privman Champaloux, Nathan Donelson, Poojan Pyakurel, Danielle Wolin, Leah Ostendorf, Madelaine Denno, Ryan Borman, Chris Burke, Jonah C Short-Miller, Maria R Yoder, Jeffrey M Copeland, Subhabrata Sanyal, B Jill Venton

Abstract

Recent work indicates a role for RING finger protein 11 (RNF11) in Parkinson disease (PD) pathology, which involves the loss of dopaminergic neurons. However, the role of RNF11 in regulating dopamine neurotransmission has not been studied. In this work, we tested the effect of RNF11 RNAi knockdown or overexpression on stimulated dopamine release in the larval Drosophila central nervous system. Dopamine release was stimulated using optogenetics and monitored in real-time using fast-scan cyclic voltammetry at an electrode implanted in an isolated ventral nerve cord. RNF11 knockdown doubled dopamine release, but there was no decrease in dopamine from RNF11 overexpression. RNF11 knockdown did not significantly increase stimulated serotonin or octopamine release, indicating the effect is dopamine specific. Dopamine clearance was also changed, as RNF11 RNAi flies had a higher Vmax and RNF11 overexpressing flies had a lower Vmax than control flies. RNF11 RNAi flies had increased mRNA levels of dopamine transporter (DAT) in RNF11, confirming changes in DAT. In RNF11 RNAi flies, release was maintained better for stimulations repeated at short intervals, indicating increases in the recycled releasable pool of dopamine. Nisoxetine, a DAT inhibitor, and flupenthixol, a D2 antagonist, did not affect RNF11 RNAi or overexpressing flies differently than control. Thus, RNF11 knockdown causes early changes in dopamine neurotransmission, and this is the first work to demonstrate that RNF11 affects both dopamine release and uptake. RNF11 expression decreases in human dopaminergic neurons during PD, and that decrease may be protective by increasing dopamine neurotransmission in the surviving dopaminergic neurons.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。