HIF-1α overexpression in mesenchymal stem cell-derived exosome-encapsulated arginine-glycine-aspartate (RGD) hydrogels boost therapeutic efficacy of cardiac repair after myocardial infarction

间充质干细胞衍生的外泌体包裹的精氨酸-甘氨酸-天冬氨酸 (RGD) 水凝胶中 HIF-1α 过表达增强心肌梗死后心脏修复的治疗效果

阅读:6
作者:Qingjie Wang, Le Zhang, Zhiqin Sun, Boyu Chi, Ailin Zou, Lipeng Mao, Xu Xiong, JianGuang Jiang, Ling Sun, Wenwu Zhu, Yuan Ji

Aims

Naturally secreted extracellular vesicles (EVs) play important roles in stem-mediated cardioprotection. This study aimed to investigate the cardioprotective function and underlying mechanisms of EVs derived from HIF-1α engineered mesenchymal stem cells (MSCs) in a rat model of AMI.

Conclusion

EVs released by MSCs with HIF-1α overexpression can promote the angiogenesis of endothelial cells and the apoptosis of cardiomyocytes via upregulating the expression of miR-221-3p. RGD hydrogels can enhance the therapeutic efficacy of HIF-1α engineered MSCs-derived EVs.

Results

EVs isolated from HIF-1α engineered MSCs (HIF-1α-EVs) and control MSCs (NC-EVs) were prepared. In in vitro experiments, the EVs were incubated with cardiomyocytes and endothelial cells exposed to hypoxia and serum deprivation (H/SD); in in vivo experiments, the EVs were injected in the acutely infarcted hearts of Sprague-Dawley rats. Compared with NC-EVs, HIF-1α-EVs significantly inhibited the apoptosis of cardiomyocytes and enhanced angiogenesis of endothelial cells; meanwhile, HIF-1α-EVs also significantly shrunk fibrotic area and strengthened cardiac function in infarcted rats. After treatment with EVs/RGD-biotin hydrogels, we observed longer retention, higher stability in HIF-1α-EVs, and stronger cardiac function in the rats. Quantitative real-time PCR (qRT-PCR) displayed that miRNA-221-3p was highly expressed in HIF-1α-EVs. After miR-221-3p was inhibited in HIF-1α-EVs, the biological effects of HIF-1α EVs on apoptosis and angiogenesis were attenuated.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。