LRRC8A as a central mediator promotes colon cancer metastasis by regulating PIP5K1B/PIP2 pathway

LRRC8A 作为中枢介质通过调节 PIP5K1B/PIP2 通路促进结肠癌转移

阅读:8
作者:Haifeng Zhang, Rong Liu, Zhenghui Jing, Chunying Li, Wentao Fan, Houli Li, Hongbing Li, Jie Ren, Shiyu Cui, Wenbao Zhao, Lei Yu, Yuhui Bai, Shujing Liu, Chunlu Fang, Wenqi Yang, Yuan Wei, Liangming Li, Shuang Peng

Abstract

Colorectal cancer (CRC) has been the third most common malignancy and the second cause of cancer-related mortality. As the core of volume-sensitive chloride currents, leucine-rich repeat-containing 8A (LRRC8A) contributes to tumor progression but is not consistent, especially for whom the roles in colon carcinoma metastasis were not fully elucidated. Herein, LRRC8A proteins were found highly expressed in hematogenous metastasis from human colorectal cancer samples. The oxaliplatin-resistant HCT116 cells highly expressed LRRC8A, which was related to impaired proliferation and enhanced migration. The over-expressed LRRC8A slowed proliferation and increased migration ex vivo and in vivo. The elevated LRRC8A upregulated the focal adhesion, MAPK, AMPK, and chemokine signaling pathways via phosphorylation and dephosphorylation. Inhibition of LRRC8A impeded the TNF-α signaling cascade and TNF-α-induced migration. LRRC8A binding to PIP5K1B regulated the PIP2 formation, providing a platform for LRRC8A to mediate cell signaling transduction. Importantly, LRRC8A self-regulated its transcription via NF-κB1 and NF-κB2 pathways and the upregulation of NIK/NF-κB2/LRRC8A transcriptional axis was unfavorable for colon cancer patients. Collectively, our findings reveal that LRRC8A is a central mediator in mediating multiple signaling pathways to promote metastasis and targeting LRRC8A proteins could become a potential clinical biomarker-driven treatment strategy for colon cancer patients.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。