Tanshinones: First-in-Class Inhibitors of the Biogenesis of the Type 3 Secretion System Needle of Pseudomonas aeruginosa for Antibiotic Therapy

丹参酮:用于抗生素治疗的首创铜绿假单胞菌 3 型分泌系统针状菌生物合成抑制剂

阅读:4
作者:Chao Feng, Yinong Huang, Wangxiao He, Xiyao Cheng, Huili Liu, Yongqi Huang, Bohan Ma, Wei Zhang, Chongbing Liao, Weihui Wu, Yongping Shao, Dan Xu, Zhengding Su, Wuyuan Lu

Abstract

The type 3 secretion system (T3SS) found as cell-surface appendages of many pathogenic Gram-negative bacteria, although nonessential for bacterial survival, is an important therapeutic target for drug discovery and development aimed at inhibiting bacterial virulence without inducing antibiotic resistance. We designed a fluorescence-polarization-based assay for high-throughput screening as a mechanistically well-defined general strategy for antibiotic discovery targeting the T3SS and made a serendipitous discovery of a subset of tanshinones-natural herbal compounds in traditional Chinese medicine widely used for the treatment of cardiovascular and cerebrovascular diseases-as effective inhibitors of the biogenesis of the T3SS needle of multi-drug-resistant Pseudomonas aeruginosa. By inhibiting the T3SS needle assembly and, thus, cytotoxicity and pathogenicity, selected tanshinones reduced the secretion of bacterial virulence factors toxic to macrophages in vitro, and rescued experimental animals challenged with lethal doses of Pseudomonas aeruginosa in a murine model of acute pneumonia. As first-in-class inhibitors with a demonstrable safety profile in humans, tanshinones may be used directly to alleviate Pseudomonas-aeruginosa-associated pulmonary infections without inducing antibiotic resistance. Since the T3SS is highly conserved among Gram-negative bacteria, this antivirulence strategy may be applicable to the discovery and development of novel classes of antibiotics refractory to existing resistance mechanisms for the treatment of many bacterial infections.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。