Mg ATP and antioxidants augment the radioprotective effect of surfactant copolymers

Mg ATP 和抗氧化剂增强表面活性剂共聚物的放射保护作用

阅读:6
作者:Alexander P Soneru, Michael A Beckett, Ralph R Weichselbaum, Raphael C Lee

Abstract

Mediated by reactive oxygen species, the damaging effects of high-intensity ionizing irradiation on tissues are dose, frequency, oxygen concentration, and tissue property dependent. Intense ionizing irradiation exposure may cause rapid cellular necrosis by peroxidation of membrane lipids leading to membrane disruption. This leads to a loss of the transmembrane ionic gradients and a subsequent depletion of the cellular ATP store, followed by cellular generation of reactive oxygen species. When membrane disruption is extensive, acute cellular necrosis follows. Triblock copolymer surfactants, such as Poloxamer 188 (P188), are able to seal damaged rhabdomyocyte membranes, increasing post-irradiation viability. Separated rat rhabdomyocytes were exposed to 40 Gy (Co 1.5 Gy min) irradiation and treated at 20 min intervals with combination permutations of P188, N-acetylcysteine (NAC), and Mg-ATP. Cell viability at 18 and 48 h was determined using Calcein-AM and Ethidium Homodimer-1 staining. At 18 h after irradiation, the combined administration of P188, ATP, and NAC restored cell viability rates to near sham-exposed levels of 60%. At 48 h post-irradiation, cell viability dropped substantially to the 7-20% range, regardless of attempted intervention. Nevertheless, the combination of P188, ATP, and NAC more than doubled cell viability at the 48-h time point. Neither 8 kDa polyethylene glycol nor 10 kDa neutral dextran was as effective in enhancing cell viability. These results indicate that antioxidants and cellular energy substrates improve the efficacy of membrane-sealing copolymer surfactants in prolonging cellular viability following massive radiation exposure.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。