Pivotal role of mitochondrial Na⁺₋Ca²⁺ exchange in antigen receptor mediated Ca²⁺ signalling in DT40 and A20 B lymphocytes

线粒体 Na⁺₋Ca²⁺ 交换在 DT40 和 A20 B 淋巴细胞中抗原受体介导的 Ca²⁺ 信号传导中的关键作用

阅读:4
作者:Bongju Kim, Ayako Takeuchi, Orie Koga, Masaki Hikida, Satoshi Matsuoka

Abstract

Cytoplasmic Ca(2+) concentration ([Ca(2+)](i)) increases upon activation of antigen-receptor in lymphocytes. Mitochondria have been suggested to regulate the [Ca(2+)](i) response, but the molecular mechanisms and the roles are poorly understood. To clarify them, we carried out a combination study of mathematical simulations and knockout or knockdown of NCLX, a gene candidate for the mitochondrial Na(+)-Ca(2+) exchanger (NCX(mit)), in B lymphocytes. A mathematical model of Ca(2+) dynamics in B lymphocytes demonstrated that NCX(mit) inhibition reduces basal Ca(2+) content of endoplasmic reticulum (ER) and suppresses B-cell antigen receptor (BCR)-mediated [Ca(2+)](i) rise. The predictions were validated in DT40 B lymphocytes of heterozygous NCLX knockout (NCLX(+/-)). In NCLX(+/-) cells, mitochondrial Ca(2+) efflux via NCX(mit) was strongly decelerated, suggesting NCLX is a gene responsible for NCX(mit) in B lymphocytes. Consistent with the predictions, ER Ca(2+) content declined and [Ca(2+)](i) hardly rose upon BCR activation in NCLX(+/-) cells. ER Ca(2+) uptake was reduced to ∼58% of the wild-type (WT), while it was comparable to WT when mitochondrial respiration was disturbed. Essentially the same results were obtained by a pharmacological inhibition or knockdown of NCLX by siRNA in A20 B lymphocytes. Unexpectedly, ER Ca(2+) leak was augmented and co-localization of mitochondria with ER was lower in NCLX(+/-) and NCLX silenced cells. Taken together, we concluded that NCLX is a key Ca(2+) provider to ER, and that NCLX-mediated Ca(2+) recycling between mitochondria and ER is pivotal in B cell responses to antigen.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。