miR675 upregulates long noncoding RNA H19 through activating EGR1 in human liver cancer

miR675 通过激活人类肝癌中的 EGR1 上调长链非编码 RNA H19

阅读:3
作者:Haiyan Li, Jiao Li, Song Jia, Mengying Wu, Jiahui An, Qidi Zheng, Wei Zhang, Dongdong Lu

Abstract

microRNAs (miRNAs) are short non-coding RNAs that are involved in post-transcriptional regulation of gene expression in multicellular organisms by affecting both the stability and translation of mRNAs. miR675, embedded in H19's first exon, had been linked to the development of human cancers. Herein, we demonstrate miR675 overexpression promotes and silencing miR675 attenuated liver cancer cell growth in vitro and in vivo. Mechanistically, miR675 inhibits the heterochromatin1 isoform HP1α expression in human liver cancer cells which causes a dramatically decrease of the total histone H3 lysine 9 trimethylation (H3K9me3) , histone H3 lysine 27 trimethylation (H3K27me3) and a increase of histone H3 lysine 27 acetylation(H3K27Ac).Notably, a significant reduction of the H3K9me3 and H3K27me3 and the increment of H3K27Ac occupancy on the promoter region of EGR1 triggers EGR1 transcription, translation, sumoylation and activation which upregulates lincRNA H19. Strikingly, H19 may induce and activate tumor-specific pyruvate kinase M2 (PKM2) which is essential for the Warburg effect in its dimer and for gene expression in its teramer during tumorigenesis. Our results imply that miR675 is involved in the epigenetic regulation of H3K9me3, H3k27me3 and H3K27Ac for gene expression and function during hepatocarcinogenesis (e.g.C-myc,Pim1,Ras,CyclinD1,RB1).These findings sheds light on the significance of miR675-HP1α-EGR1-H19-PKM2 cascade signaling pathway in liver cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。