Comparative Study of the Effects of Dietary-Free and -Bound Nε-Carboxymethyllysine on Gut Microbiota and Intestinal Barrier

膳食中非Nε-羧甲基赖氨酸和结合Nε-羧甲基赖氨酸对肠道菌群和肠道屏障影响的比较研究

阅读:4
作者:Xiaojin Yuan, Juan Liu, Chenxi Nie, Qingyu Ma, Chaoqi Wang, Huicui Liu, Zhifei Chen, Min Zhang, Juxiu Li

Abstract

Nε-carboxymethyllysine (CML) is produced by a nonenzymatic reaction between reducing sugar and ε-amino group of lysine in food and exists as free and bound forms with varying digestibility and absorption properties in vivo, causing diverse interactions with gut microbiota. The effects of different forms of dietary CML on the gut microbiota and intestinal barrier of mice were explored. Mice were exposed to free and bound CML for 12 weeks, and colonic morphology, gut microbiota, fecal short-chain fatty acids (SCFAs), intestinal barrier, and receptor for AGE (RAGE) signaling cascades were measured. The results indicated that dietary-free CML increased the relative abundance of SCFA-producing genera including Blautia, Faecalibacterium, Agathobacter, and Roseburia. In contrast, dietary-bound CML mainly increased the relative abundance of Akkermansia. Moreover, dietary-free and -bound CML promoted the gene and protein expression of zonula occludens-1 and claudin-1. Additionally, the intake of free and bound CML caused an upregulation of RAGE expression but did not activate downstream inflammatory pathways due to the upregulation of oligosaccharyl transferase complex protein 48 (AGER1) expression, indicating a delicate balance between protective and proinflammatory effects in vivo. Dietary-free and -bound CML could modulate the gut microbiota community and increase tight-junction expression, and dietary-free CML might exert a higher potential benefit on gut microbiota and SCFAs than dietary-bound CML.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。