A bacterial biosensor for oxidative stress using the constitutively expressed redox-sensitive protein roGFP2

使用组成性表达的氧化还原敏感蛋白 roGFP2 检测氧化应激的细菌生物传感器

阅读:5
作者:Carlos R Arias-Barreiro, Keisuke Okazaki, Apostolos Koutsaftis, Salmaan H Inayat-Hussain, Akio Tani, Maki Katsuhara, Kazuhide Kimbara, Izumi C Mori

Abstract

A highly specific, high throughput-amenable bacterial biosensor for chemically induced cellular oxidation was developed using constitutively expressed redox-sensitive green fluorescent protein roGFP2 in E. coli (E. coli-roGFP2). Disulfide formation between two key cysteine residues of roGFP2 was assessed using a double-wavelength ratiometric approach. This study demonstrates that only a few minutes were required to detect oxidation using E. coli-roGFP2, in contrast to conventional bacterial oxidative stress sensors. Cellular oxidation induced by hydrogen peroxide, menadione, sodium selenite, zinc pyrithione, triphenyltin and naphthalene became detectable after 10 seconds and reached the maxima between 80 to 210 seconds, contrary to Cd(2+), Cu(2+), Pb(2+), Zn(2+) and sodium arsenite, which induced the oxidation maximum immediately. The lowest observable effect concentrations (in ppm) were determined as 1.0 × 10(-7) (arsenite), 1.0 × 10(-4) (naphthalene), 1.0 × 10(-4) (Cu(2+)), 3.8 × 10(-4) (H(2)O(2)), 1.0 × 10(-3) (Cd(2+)), 1.0 × 10(-3) (Zn(2+)), 1.0 × 10(-2) (menadione), 1.0 (triphenyltin), 1.56 (zinc pyrithione), 3.1 (selenite) and 6.3 (Pb(2+)), respectively. Heavy metal-induced oxidation showed unclear response patterns, whereas concentration-dependent sigmoid curves were observed for other compounds. In vivo GSH content and in vitro roGFP2 oxidation assays together with E. coli-roGFP2 results suggest that roGFP2 is sensitive to redox potential change and thiol modification induced by environmental stressors. Based on redox-sensitive technology, E. coli-roGFP2 provides a fast comprehensive detection system for toxicants that induce cellular oxidation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。