miR-195-5p Targets CDK1 To Regulate New DNA Synthesis and Inhibit the Proliferation of Hepatocellular Carcinoma Cells

miR-195-5p靶向CDK1调控新DNA合成抑制肝细胞癌细胞增殖

阅读:5
作者:Chunhui Zhou, Sujuan Zhu, Haiping Li

Abstract

In cell biological functions and viability, cyclin-dependent kinase 1 (CDK1) takes an essential part. miR-195-5p is pivotal in pathogenesis and development of hepatocellular carcinoma (HCC). But in HCC, whether there is a connection between CDK1 and miR-195-5p remains an unanswered question. In view of this, this study focuses on exploring the mechanism of miR-195-5p/CDK1 in the progression of HCC. The bioinformatics method was applied to predict target mRNA and upstream miRNAs, and further analyzes the signal enrichment pathway of target mRNA. We utilized qRT-PCR and Western blot for detecting expression of genes, as well as their corresponding protein levels. Cell cycle was assayed through flow cytometry. As for the examination of DNA replication, the EDU staining was employed. Cell proliferation was determined via plate colony formation assay. The combined application of bioinformatics analysis and dual-luciferase gene assay assisted in figuring out the binding relationship between miR-195-5p and CDK1. DNA damage was marked by immunofluorescence staining. CDK1 was overexpressed in HCC cells, and enriched in cell cycle and DNA replication pathway. Silencing CDK1 modulated cell cycle of HCC cells and inhibited DNA replication and proliferation. In HCC cells, miR-195-5p targeted and reduced CDK1 expression, inhibited the G1 phase-to-S phase transition, induced DNA damage response, and inhibited DNA replication and proliferation. miR-195-5p targeted CDK1 and repressed synthesis of new DNA in HCC cells, thus restraining HCC cell proliferation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。