Stromal-epithelial lactate shuttle induced by tumor‑derived interleukin‑1β promotes cell proliferation in oral squamous cell carcinoma

肿瘤来源的白细胞介素-1β诱导的基质-上皮乳酸穿梭促进口腔鳞状细胞癌细胞增殖

阅读:3
作者:Jie Wu, Yun Hong, Tong Wu, Juan Wang, Xiaobing Chen, Zhi Wang, Bin Cheng, Juan Xia

Abstract

Stromal-epithelial lactate shuttle is an essential process to support fast‑growing tumor cells, however, the underlying mechanism remains ambiguous. Interleukin‑1β (IL‑1β), which is a key node gene in both stromal and epithelial cells of oral squamous cell carcinoma (OSCC), may participate in this metabolic reprogramming. In the present study, anaerobic glycolysis of cancer‑associated fibroblasts (CAFs) was evaluated and the role of IL‑1β in regulating stromal‑epithelial lactate shuttle was determined. A co‑culture system of primary fibroblasts and OSCC cell lines (CAL27, UM1 or SCC25) was created to investigate the stromal‑epithelial interaction. α‑smooth muscle actin (α‑SMA) expression of fibroblasts, IL‑1β expression and cell proliferation of OSCC cells, and a series of glycolytic genes were measured. Recombinant IL‑1β treatment and IL‑1β knockdown in UM1 cells were also used to evaluate the effect of IL‑1β. Expression of α‑SMA, glucose transporter 1, hexokinase 2, lactic dehydrogenase and mono‑carboxylate transporter (MCT) 4 were significantly overexpressed in activated fibroblasts, while IL‑1β and MCT1 were upregulated in OSCC cells, indicating enhanced glycolysis in cells of the tumor stroma and a lactate shuttle to the tumor cells. Furthermore, exogenous IL‑1β induced fibroblasts to present similar expression profiles as that in the co‑culture system. Silencing of IL‑1β significantly abrogated the regulatory effect of UM1 cells on stromal glycolysis. Additionally, carboxy‑fluorescein succinimidyl ester cell tracing indicated that OSCC cell proliferation was accelerated during co‑cultivation with fibroblasts. These results indicate that tumor‑derived IL‑1β enhanced stromal glycolysis and induced one‑way lactate flow from the tumor mesenchyme to transformed epithelium, which promotes OSCC proliferation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。