Conditional Deletion of β-Catenin in the Mediobasal Hypothalamus Impairs Adaptive Energy Expenditure in Response to High-Fat Diet and Exacerbates Diet-Induced Obesity

下丘脑内侧基底节区 β-Catenin 的条件性缺失会削弱机体对高脂饮食的适应性能量消耗,并加剧饮食引起的肥胖

阅读:13
作者:Mohammed Z Rizwan, Kaj Kamstra, Dominik Pretz, Peter R Shepherd, Alexander Tups, David R Grattan

Abstract

β-Catenin is a bifunctional molecule that is an effector of the wingless-related integration site (Wnt) signaling to control gene expression and contributes to the regulation of cytoskeleton and neurotransmitter vesicle trafficking. In its former role, β-catenin binds transcription factor 7-like 2 (TCF7L2), which shows strong genetic associations with the pathogenesis of obesity and type-2 diabetes. Here, we sought to determine whether β-catenin plays a role in the neuroendocrine regulation of body weight and glucose homeostasis. Bilateral injections of adeno-associated virus type-2 (AAV2)-mCherry-Cre were placed into the arcuate nucleus of adult male and female β-catenin flox mice, to specifically delete β-catenin expression in the mediobasal hypothalamus (MBH-β-cat KO). Metabolic parameters were then monitored under conditions of low-fat (LFD) and high-fat diet (HFD). On LFD, MBH-β-cat KO mice showed minimal metabolic disturbances, but on HFD, despite having only a small difference in weekly caloric intake, the MBH-β-cat KO mice were significantly heavier than the control mice in both sexes (p < 0.05). This deficit seemed to be due to a failure to show an adaptive increase in energy expenditure seen in controls, which served to offset the increased calories by HFD. Both male and female MBH-β-cat KO mice were highly glucose intolerant when on HFD and displayed a significant reduction in both leptin and insulin sensitivity compared with controls. This study highlights a critical role for β-catenin in the hypothalamic circuits regulating body weight and glucose homeostasis and reveals potential mechanisms by which genetic variation in this pathway could impact on development of metabolic disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。