Effect of Creosote Bush-Derived NDGA on Expression of Genes Involved in Lipid Metabolism in Liver of High-Fructose Fed Rats: Relevance to NDGA Amelioration of Hypertriglyceridemia and Hepatic Steatosis

杂酚油灌木衍生的 NDGA 对高果糖喂养大鼠肝脏脂质代谢基因表达的影响:与 NDGA 改善高甘油三酯血症和肝脏脂肪变性的相关性

阅读:8
作者:Haiyan Zhang, Yihang Li, Jie Hu, Wen-Jun Shen, Madhurima Singh, Xiaoming Hou, Alex Bittner, Stefanie Bittner, Yuan Cortez, Juveria Tabassum, Fredric B Kraemer, Salman Azhar

Abstract

Nordihydroguaiaretic acid (NDGA), the main metabolite of Creosote bush, has been shown to have profound effects on the core components of the metabolic syndrome (MetS), lowering blood glucose, free fatty acids (FFA) and triglyceride (TG) levels in several models of dyslipidemia, as well as improving body weight (obesity), insulin resistance, diabetes and hypertension, and ameliorating hepatic steatosis. In the present study, a high-fructose diet (HFrD) fed rat model of hypertriglyceridemia was employed to further delineate the underlying mechanism by which NDGA exerts its anti-hypertriglyceridemic action. In the HFrD treatment group, NDGA administration by oral gavage decreased plasma levels of TG, glucose, FFA, and insulin, increased hepatic mitochondrial fatty acid oxidation and attenuated hepatic TG accumulation. qRT-PCR measurements indicated that NDGA treatment increased the mRNA expression of key fatty acid transport (L-FABP, CD36), and fatty acid oxidation (ACOX1, CPT-2, and PPARα transcription factor) genes and decreased the gene expression of enzymes involved in lipogenesis (FASN, ACC1, SCD1, L-PK and ChREBP and SREBP-1c transcription factors). Western blot analysis indicated that NDGA administration upregulated hepatic insulin signaling (P-Akt), AMPK activity (P-AMPK), MLYCD, and PPARα protein levels, but decreased SCD1, ACC1 and ACC2 protein content and also inactivated ACC1 activity (increased P-ACC1). These findings suggest that NDGA ameliorates hypertriglyceridemia and hepatic steatosis primarily by interfering with lipogenesis and promoting increased channeling of fatty acids towards their oxidation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。