Fabrication of Bilayer Nanofibrous-Hydrogel Scaffold from Bacterial Cellulose, PVA, and Gelatin as Advanced Dressing for Wound Healing and Soft Tissue Engineering

利用细菌纤维素、聚乙烯醇和明胶制造双层纳米纤维水凝胶支架,作为伤口愈合和软组织工程的高级敷料

阅读:6
作者:Rawaiz Khan, Muhammad Umar Aslam Khan, Goran M Stojanović, Aneela Javed, Sajjad Haider, Saiful Izwan Abd Razak

Abstract

Tissue engineering is currently one of the fastest-growing areas of engineering, requiring the fabrication of advanced and multifunctional materials that can be used as scaffolds or dressings for tissue regeneration. In this work, we report a bilayer material prepared by electrospinning a hybrid material of poly(vinyl alcohol) (PVA) and bacterial cellulose (BC NFs) (top layer) over a highly interconnected porous 3D gelatin-PVA hydrogel obtained by a freeze-drying process (bottom layer). The techniques were combined to produce an advanced material with synergistic effects on the physical and biological properties of the two materials. The bilayer material was characterized using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and a water contact measurement system (WCMS). Studies on swelling, degradability, porosity, drug release, cellular and antibacterial activities were performed using standardized procedures and assays. FTIR confirmed cross-linking of both the top and bottom layers, and SEM showed porous structure for the bottom layer, random deposition of NFs on the surface, and aligned NFs in the cross section. The water contact angle (WCA) showed a hydrophilic surface for the bilayer material. Swelling analysis showed high swelling, and degradation analysis showed good stability. The bilayer material released Ag-sulfadiazine in a sustained and controlled manner and showed good antibacterial activities against severe disease-causing gram + ive and -ive (Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa) bacterial strains. In vitro biological studies were performed on fibroblasts (3T3) and human embryonic kidneys (HEK-293), which showed desirable cell viability, proliferation, and adhesion to the bilayer. Thus, the synergistic effect of NFs and the hydrogel resulted in a potential wound dressing material for wound healing and soft tissue engineering.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。