Neurotrophic factor-secreting cells restored endogenous hippocampal neurogenesis through the Wnt/β-catenin signaling pathway in AD model mice

神经营养因子分泌细胞通过 Wnt/β-catenin 信号通路恢复 AD 模型小鼠内源性海马神经发生

阅读:5
作者:Gozal Bahlakeh, Reza Rahbarghazi, Ali Abedelahi, Saeed Sadigh-Eteghad, Mohammad Karimipour

Background

Impairment in neurogenesis correlates with memory and cognitive dysfunction in AD patients. In the recent decade, therapies with stem cell bases are growing and proved to be efficient. This study is a preliminary attempt to explore the impact of NTF-SCs on hippocampal neurogenesis mediated by the Wnt/β-catenin signaling cascade in AD-like mouse brain parenchyma.

Conclusions

The activation of Wnt/β-catenin pathway via NTF-SCs can be touted as a possible therapeutic approach to restore neurogenesis in AD mice.

Methods

The BALB/c mice were divided into four groups: Control, AD +Vehicle, AD+ TF-SCs-CM and AD+NTF-SCs (n = 10). For AD induction, 100 µM Aβ1-42 was injected into lateral ventricles. The AD-like model was confirmed via passive avoidance test and Thioflavin-S staining 21 days following Aβ injection. Next, NTF-SCs were differentiated from ADMSCs, and both NTF-SCs and supernatant (NTF-SCs-CM) were injected into the hippocampus after AD confirmation. Endogenous neural stem cells (NSCs) proliferation capacity was assessed after 50 mg/kbW BrdU injection for 4 days using immunofluorescence (IF) staining. The percent of BrdU/Nestin and BrdU/NeuN positive NSCs were calculated. Real-time RT-PCR was used to detect genes related to the Wnt/β-catenin signaling cascade. The spatial learning and memory alternation was evaluated using the Morris water maze (MWM).

Results

Data showed the reduction in escape latency over 5 days in the AD mice compared to the control group. The administration of NTF-SCs and NTF-SCs-CM increased this value compared to the AD-Vehicle group. Both NTF-SCs and NTF-SCs-CM were the potential to reduce the cumulative distance to the platform in AD mice compared to the AD-Vehicle group. The time spent in target quadrants was ameliorated following NTF-SCs and NTF-SCs-CM transplantation followed by an improved MWM performance. IF imaging revealed the increase in BrdU/Nestin+ and BrdU/NeuN+ in AD mice that received NTF-SCs and NTF-SCs-CM, indicating enhanced neurogenesis. Based on real-time PCR analysis, the expression of PI3K, Akt, MAPK, ERK, Wnt, and β-catenin was upregulated and coincided with the suppression of GSK-3β after injection of NTF-SCs-CM and NTF-SCs. In this study, NTF-SCs had superior effects in AD mice that received NTF-SCs compared to NTF-SCs-CM. Conclusions: The activation of Wnt/β-catenin pathway via NTF-SCs can be touted as a possible therapeutic approach to restore neurogenesis in AD mice.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。