In Vitro Toxicological Investigation and Risk Assessment of E-Cigarette Aerosols Based on a Novel Solvent-Free Extraction Method

基于新型无溶剂萃取法的电子烟气溶胶体外毒理学研究及风险评估

阅读:5
作者:Hongjuan Wang, Shulei Han, Huan Chen, Peizhen Li, Shigang Li, Yujuan Wu, Chunxia Zhang, Yaning Fu, Yushan Tian, Tong Liu, Hongwei Hou, Qingyuan Hu

Abstract

Cigarettes, potentially safer alternatives to combustible cigarettes, have been reported to increase the health risk for long-term users, so accumulating information about their potential toxicity is of great concern. However, toxicological evaluations of e-cigarette aerosols are limited, which may be attributed to the lack of a simple and efficient extraction method. Here, we developed a high-speed centrifugal method for extracting e-cigarette aerosol collected mass (ACM) and prepared ACM samples of 26 representative e-cigarettes, and 10 samples were further selected based on their cytotoxicity for systematic toxicological assessments. The average extraction efficiency of ACM, primary aerosol components, and typical carbonyls exceeded 85%. The toxicological evaluation showed that the IC50 value range of e-cigarettes for cytotoxicity was 2-52 mg/mL ACM, all e-cigarettes can induce the risk of DNA damage, mitochondrial depolarization, and c-Jun-related signal disturbances; most e-cigarettes significantly caused disturbance of oxidative stress balance. E-cigarettes with higher cytotoxicity appeared to cause a higher degree of damage, while no e-cigarette promoted mutagenicity and cytochrome c release. The toxicity difference among e-cigarettes using nicotine equivalent was significantly lower than that of ACM. This study provides a novel extraction method and a comprehensive in vitro toxicity risk profile of e-cigarette aerosols.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。