ROS-Induced CXCR4 Signaling Regulates Mantle Cell Lymphoma (MCL) Cell Survival and Drug Resistance in the Bone Marrow Microenvironment via Autophagy

ROS 诱导的 CXCR4 信号通过自噬调节骨髓微环境中的套细胞淋巴瘤 (MCL) 细胞存活和耐药性

阅读:5
作者:Zheng Chen, Albert E Teo, Nami McCarty

Conclusions

Our data, for the first time, revealed new roles of the CXCR/SDF-1 signaling axis on autophagy formation in MCL, which further promoted their survival within the bone marrow microenvironment. Targeting the CXCR4/SDF-1/autophagy signaling axis may contribute to an enhanced efficacy of current therapies.

Purpose

Patients with advanced stages of mantle cell lymphoma (MCL) have a poor prognosis after standard therapies. MCL cells in those patients often spread into tissues other than lymph nodes, such as the bone marrow. Apart from directed migration and homing, there is little understanding of the function of the CXCR4/SDF-1 signaling axis in MCL. In this report, we aim to understand mechanisms of MCL cell survival in the bone marrow. Experimental design: For comprehensive analyses of MCL interactions with bone marrow stromal cells, we have generated gene knockout cells using CRISPR-CAS9 system and gene knockdown cells to reveal novel roles of the CXCR4/SDF-1 signaling.

Results

CXCR4 silencing in MCL cells led to a significant reduction in proliferation, cell adhesion to bone marrow stromal cells, and colony formation in PHA-LCM methylcellulose medium, which were reversed upon the addition of SDF-1-neutralizing antibodies. In addition, tracking MCL cell engraftment in vivo revealed that quiescent MCL cells are significantly reduced in the bone marrow upon CXCR4 silencing, indicating that CXCR4/SDF-1 signaling is required for the survival and maintenance of the quiescent MCL cells. Further analysis revealed novel mechanisms of ROS-induced CXCR4/SDF-1 signaling that stimulate autophagy formation in MCL cells for their survival. Conclusions: Our data, for the first time, revealed new roles of the CXCR/SDF-1 signaling axis on autophagy formation in MCL, which further promoted their survival within the bone marrow microenvironment. Targeting the CXCR4/SDF-1/autophagy signaling axis may contribute to an enhanced efficacy of current therapies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。