Specificity of Varenicline in Blocking Mesolimbic Circuit Activation to Natural and Drug Rewards

伐尼克兰阻断中脑边缘回路对自然和药物奖励激活的特异性

阅读:2
作者:Nitsan Goldstein ,Jamie R E Carty ,J Nicholas Betley

Abstract

The mesolimbic dopamine (DA) system reinforces behaviors that are critical for survival. However, drug dependence can occur when drugs of abuse, such as nicotine, highjack this reinforcement system. Pharmacologically targeting the DA system to selectively block drug reinforcement requires a detailed understanding of the neural circuits and molecular pathways that lead to the reward-based activation of mesolimbic circuits. Varenicline is an approved smoking cessation drug that has been shown to block nicotine-evoked DA increases in the nucleus accumbens (NAc) through action on nicotinic acetylcholine receptors. Because these receptors have been implicated in the reinforcement of other addictive substances, we explored the possibility that varenicline could broadly affect reward processing. We used in vivo fiber photometry to monitor midbrain DA neuron activity and striatal DA levels following either natural or drug rewards in mice treated with varenicline. We demonstrate that varenicline pretreatment enhances the suppression of nicotine-evoked DA release by attenuating DA neuron activity in the VTA. Varenicline's ability to attenuate DA release is highly specific to nicotine, and varenicline slightly elevates DA release when co-administered with morphine or ethanol. Furthermore, varenicline has no effect on DA release in response to naturally rewarding behavior such as food intake or exercise. These results demonstrate the exquisite specificity with which varenicline blocks nicotine reward and highlight the complexity with which different rewards activate the mesolimbic DA system. Keywords: calcium imaging; dopamine; drug reward; natural reward; nicotine; smoking cessation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。