Genetic deletion of trace amine 1 receptors reveals their role in auto-inhibiting the actions of ecstasy (MDMA)

微量胺 1 受体的基因缺失揭示了它们在自我抑制摇头丸 (MDMA) 作用中的作用

阅读:8
作者:Benjamin Di Cara, Roberto Maggio, Gabriella Aloisi, Jean-Michel Rivet, Ebba Gregorsson Lundius, Takashi Yoshitake, Per Svenningsson, Mauricette Brocco, Alain Gobert, Lotte De Groote, Laetitia Cistarelli, Sylvie Veiga, Catherine De Montrion, Marianne Rodriguez, Jean-Pierre Galizzi, Brian P Lockhart, 

Abstract

"Ecstasy" [3,4-methylenedioxymetamphetamine (MDMA)] is of considerable interest in light of its prosocial properties and risks associated with widespread recreational use. Recently, it was found to bind trace amine-1 receptors (TA(1)Rs), which modulate dopaminergic transmission. Accordingly, using mice genetically deprived of TA(1)R (TA(1)-KO), we explored their significance to the actions of MDMA, which robustly activated human adenylyl cyclase-coupled TA(1)R transfected into HeLa cells. In wild-type (WT) mice, MDMA elicited a time-, dose-, and ambient temperature-dependent hypothermia and hyperthermia, whereas TA(1)-KO mice displayed hyperthermia only. MDMA-induced increases in dialysate levels of dopamine (DA) in dorsal striatum were amplified in TA(1)-KO mice, despite identical levels of MDMA itself. A similar facilitation of the influence of MDMA upon dopaminergic transmission was acquired in frontal cortex and nucleus accumbens, and induction of locomotion by MDMA was haloperidol-reversibly potentiated in TA(1)-KO versus WT mice. Conversely, genetic deletion of TA(1)R did not affect increases in DA levels evoked by para-chloroamphetamine (PCA), which was inactive at hTA(1) sites. The TA(1)R agonist o-phenyl-3-iodotyramine (o-PIT) blunted the DA-releasing actions of PCA both in vivo (dialysis) and in vitro (synaptosomes) in WT but not TA(1)-KO animals. MDMA-elicited increases in dialysis levels of serotonin (5-HT) were likewise greater in TA(1)-KO versus WT mice, and 5-HT-releasing actions of PCA were blunted in vivo and in vitro by o-PIT in WT mice only. In conclusion, TA(1)Rs exert an inhibitory influence on both dopaminergic and serotonergic transmission, and MDMA auto-inhibits its neurochemical and functional actions by recruitment of TA(1)R. These observations have important implications for the effects of MDMA in humans.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。