Attenuating GABA(A) receptor signaling in dopamine neurons selectively enhances reward learning and alters risk preference in mice

选择性减弱多巴胺神经元中的 GABA(A) 受体信号可增强小鼠的奖赏学习能力并改变其风险偏好

阅读:10
作者:Jones G Parker, Matthew J Wanat, Marta E Soden, Kinza Ahmad, Larry S Zweifel, Nigel S Bamford, Richard D Palmiter

Abstract

Phasic dopamine (DA) transmission encodes the value of reward-predictive stimuli and influences both learning and decision-making. Altered DA signaling is associated with psychiatric conditions characterized by risky choices such as pathological gambling. These observations highlight the importance of understanding how DA neuron activity is modulated. While excitatory drive onto DA neurons is critical for generating phasic DA responses, emerging evidence suggests that inhibitory signaling also modulates these responses. To address the functional importance of inhibitory signaling in DA neurons, we generated mice lacking the β3 subunit of the GABA(A) receptor specifically in DA neurons (β3-KO mice) and examined their behavior in tasks that assessed appetitive learning, aversive learning, and risk preference. DA neurons in midbrain slices from β3-KO mice exhibited attenuated GABA-evoked IPSCs. Furthermore, electrical stimulation of excitatory afferents to DA neurons elicited more DA release in the nucleus accumbens of β3-KO mice as measured by fast-scan cyclic voltammetry. β3-KO mice were more active than controls when given morphine, which correlated with potential compensatory upregulation of GABAergic tone onto DA neurons. β3-KO mice learned faster in two food-reinforced learning paradigms, but extinguished their learned behavior normally. Enhanced learning was specific for appetitive tasks, as aversive learning was unaffected in β3-KO mice. Finally, we found that β3-KO mice had enhanced risk preference in a probabilistic selection task that required mice to choose between a small certain reward and a larger uncertain reward. Collectively, these findings identify a selective role for GABA(A) signaling in DA neurons in appetitive learning and decision-making.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。