Sub-dose anesthetics combined with chloride regulators protect the brain against chronic ischemia-hypoxia injury

亚剂量麻醉药联合氯离子调节剂可保护大脑免受慢性缺血缺氧损伤

阅读:4
作者:Chenyi Yang, Ye Wang, Yun Li, Xinyi Wang, Wei Hua, Zhuo Yang, Haiyun Wang

Background

Cerebral ischemia-hypoxia leads to excitotoxicity-mediated neuronal damage and cognitive dysfunction, especially in the elderly. Excessive intracellular [Cl- ]i accumulation weakens γ-aminobutyric acid (GABA) compensatory effects. Sub-anesthetic dose of propofol protected the brain against ischemia-hypoxia, which was abolished by blocking Cl- efflux transporter K+ /Cl- cotransporter 2 (KCC2). We aimed to determine whether low-dose anesthetic combined with [Cl- ]i regulators could restore the compensatory GABAergic system and improve cognitive function.

Conclusion

Sub-anesthetic dose of propofol and sevoflurane is a recommended anesthesia regimen in at-risk patients. Restoration of [Cl- ]i homeostasis and GABAergic could further reduce the brain damage caused by ischemia-hypoxia.

Methods

Chronic cerebral hypoxia (CCH) model was established by bilateral carotid artery ligation in aged rats. Sub-dose of anesthetics (propofol and sevoflurane) with or without KCC2 agonist N-ethylmaleimide (NEM) or Na+ /K+ /Cl- cotransporter 1 (NKCC1) antagonist bumetanide (BTN) was administered systemically 30 days post-surgery. Primary rat hippocampal neuronal cultures were subjected to hypoxic injury with or without drug treatment. Memory function, hippocampal neuronal survival, GABAergic system functioning, and brain-derived neurotrophic factor (BDNF) expressions were evaluated.

Results

Sub-anesthetic dose of combined propofol (1.2 μg mL-1 ) and sevoflurane [0.7 MAC (minimum alveolar concentration)] did not aggravate the hypoxic brain injury in rats or cell damage in neuronal cultures. Adding either BTN or NEM protected against hypoxic injury, associated with improved cognitive function in vivo, less intracellular accumulation of [Cl- ]i , reduced cell death, restored GABAergic compensation, and increased BDNF expression both in vivo and in vitro.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。