Unraveling the intestinal epithelial barrier in cyanotoxin microcystin-treated Caco-2 cell monolayers

揭示蓝藻毒素微囊藻毒素处理的 Caco-2 细胞单层中的肠上皮屏障

阅读:4
作者:Jan-Leo Kaak, Fábia D Lobo de Sá, Jerrold R Turner, Jörg-Dieter Schulzke, Roland Bücker

Abstract

Microcystin is a widespread cyanobacterial toxin that affects the intestine to produce diarrheal symptoms after ingestion of freshwater blue-green algae. Our study aimed to characterize the mechanism by which the toxin leads to diarrhea via epithelial barrier dysfunction in a small intestine Caco-2 cell model. Microcystin-treated human Caco-2 epithelial monolayers were functionally and molecularly analyzed for barrier dysfunction. Tight junctions (TJs) and cell damage were analyzed in relation to transepithelial electrical resistance (TER) changes. TER of microcystin-treated Caco-2 cells was reduced by 65% of the initial value after 24 h; concomitantly, permeability for fluorescein increased 2.6-fold. Western blot analysis showed reduced claudin-1 expression, while expression of claudin-3 and -4 remained unchanged. Super-resolution stimulated emission depletion microscopy revealed that TJ integrity was compromised by fraying and splitting of the TJ domain of the epithelial cells. Epithelial apoptosis did not significantly contribute to epithelial barrier dysfunction, while cytoskeletal actomyosin constriction was associated with TJ disintegration and the barrier defect. Our results indicate that microcystin causes intestinal barrier leakiness, which helps to explain the leak flux type of diarrhea as the main pathomechanism after ingestion of cyanobacterial toxin.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。