CTRP3 Protects against High Glucose-Induced Cell Injury in Human Umbilical Vein Endothelial Cells

CTRP3 保护人脐静脉内皮细胞免受高糖诱导的细胞损伤

阅读:6
作者:Fang Wang, Linlin Zhao, Yingguang Shan, Ran Li, Guijun Qin

Aims

Inflammation was closely associated with diabetes-related endothelial dysfunction. C1q/tumor necrosis factor-related protein 3 (CTRP3) is a member of the CTRP family and can provide cardioprotection in many cardiovascular diseases via suppressing the production of inflammatory factors. However, the role of CTRP3 in high glucose- (HG-) related endothelial dysfunction remains unclear. This study evaluates the effects of CTRP3 on HG-induced cell inflammation and apoptosis. Materials and

Conclusions

Taken together, these findings indicated that CTRP3 treatment blocked the accumulation of inflammatory factors and cell loss in HUVECs after HG exposure through the activation of AKT-mTOR signaling pathway. Thus, CTRP3 may be a potential therapeutic drug for the prevention of diabetes-related endothelial dysfunction.

Methods

To prevent high glucose-induced cell injury, human umbilical vein endothelial cells (HUVECs) were pretreated with recombinant CTRP3 for 1 hour followed by normal glucose (5.5 mmol/l) or high glucose (33 mmol/l) treatment. After that, cell apoptosis and inflammatory factors were determined.

Results

Our results demonstrated that CTRP3 mRNA and protein expression were significantly decreased after HG exposure in HUVECs. Recombinant human CTRP3 inhibited HG-induced accumulation of inflammatory factors and cell loss in HUVECs. CTRP3 treatment also increased the phosphorylation levels of protein kinase B (AKT/PKB) and the mammalian target of rapamycin (mTOR) in HUVECs. CTRP3 lost its inhibitory effects on HG-induced cell inflammation and apoptosis after AKT inhibition. Knockdown of endogenous CTRP3 in HUVECs resulted in increased inflammation and decreased cell viability in vitro. Conclusions: Taken together, these findings indicated that CTRP3 treatment blocked the accumulation of inflammatory factors and cell loss in HUVECs after HG exposure through the activation of AKT-mTOR signaling pathway. Thus, CTRP3 may be a potential therapeutic drug for the prevention of diabetes-related endothelial dysfunction.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。