Conclusions
For the first time, isolates of A. flavus from human keratitis patients have been shown to express regulatory and structural aflatoxin biosynthetic pathway genes. Further studies are needed to clarify the precise influence of the corneal microenvironment on expression of these genes and aflatoxin production by A. flavus infecting the cornea.
Methods
The expression of certain regulatory (aflatoxin regulatory [aflR] and aflatoxin J [aflJ]) and structural (polyketide synthase acetate [pksA] and norsolonic acid-1 [nor-1]) genes in four corneal A. flavus isolates was evaluated by reverse transcription PCR. The aflatoxin-producing potential of each strain was determined by thin-layer chromatography and quantified by spectrophotometry. Four environmental isolates were used for comparison. The mean expression levels of these genes were compared in the corneal and environmental A. flavus isolates. In addition, the mean expression levels were also correlated with the aflatoxin production levels.
Purpose
To document transcriptional activation (expression) of key aflatoxin biosynthetic pathway genes in corneal isolates of Aspergillus flavus.
Results
All isolates expressed aflJ, nor-1, and pksA, while all but one expressed aflR. Overall, significantly higher mean expression levels occurred in aflatoxigenic than in non-aflatoxigenic corneal isolates. A significant positive correlation was noted between the mean expression level of aflR and the quantum of aflatoxin production by the corneal isolates. Essentially similar patterns of expression of these genes were noted in four environmental A. flavus isolates used for comparison. Conclusions: For the first time, isolates of A. flavus from human keratitis patients have been shown to express regulatory and structural aflatoxin biosynthetic pathway genes. Further studies are needed to clarify the precise influence of the corneal microenvironment on expression of these genes and aflatoxin production by A. flavus infecting the cornea.
