A smart thermoresponsive macroporous 4D structure by 4D printing of Pickering-high internal phase emulsions stabilized by plasma-functionalized starch nanomaterials for a possible delivery system

通过 4D 打印 Pickering 高内相乳液,形成智能热响应大孔 4D 结构,并由等离子体功能化淀粉纳米材料稳定,可用于可能的输送系统

阅读:6
作者:Mahdiyar Shahbazi, Henry Jäger, Rammile Ettelaie, Jianshe Chen, Adeleh Mohammadi, Peyman Asghartabar Kashi, Marco Ulbrich

Abstract

Hierarchically porous structures combine microporosity, mesoporosity, and microporosity to enhance pore accessibility and transport, which are crucial to develop high performance materials for biofabrication, food, and pharmaceutical applications. This work aimed to develop a 4D-printed smart hierarchical macroporous structure through 3D printing of Pickering-type high internal phase emulsions (Pickering-HIPEs). The key was the utilization of surface-active (hydroxybutylated) starch nanomaterials, including starch nanocrystals (SNCs) (from waxy maize starch through acid hydrolysis) or starch nanoparticles (SNPs) (obtained through an ultrasound treatment). An innovative procedure to fabricate the functionalized starch nanomaterials was accomplished by grafting 1,2-butene oxide using a cold plasma technique to enhance their surface hydrophobicity, improving their aggregation, and thus attaining a colloidally stabilized Pickering-HIPEs with a low concentration of each surface-active starch nanomaterial. A flocculation of droplets in Pickering-HIPEs was developed after the addition of modified SNCs or SNPs, leading to the formation of a gel-like structure. The 3D printing of these Pickering-HIPEs developed a highly interconnected large pore structure, possessing a self-assembly property with thermoresponsive behavior. As a potential drug delivery system, this thermoresponsive macroporous 3D structure offered a lower critical solution temperature (LCST)-type phase transition at body temperature, which can be used in the field of smart releasing of bioactive compounds.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。