Polarized Expression of Ion Channels and Solute Carrier Family Transporters on Heterogeneous Cultured Human Corneal Endothelial Cells

异质培养的人角膜内皮细胞上离子通道和溶质载体家族转运蛋白的极化表达

阅读:6
作者:Junji Hamuro, Hideto Deguchi, Tomoko Fujita, Koji Ueda, Yuichi Tokuda, Nao Hiramoto, Kohsaku Numa, Masakazu Nakano, John Bush, Morio Ueno, Chie Sotozono, Shigeru Kinoshita

Conclusions

Our findings may suggest the relevance of qualifying the polarized expression of these ion channels and transporter-like proteins to ensure not only the suitability but also the in vivo biological functionality of cHCECs selected for use in a cell-injection therapy.

Methods

Integrated proteomics for cell lysates by liquid chromatography-tandem mass spectrometry was carried out from three aliquots of cHCECs enriched in either cluster of definition (CD)44-/+ (mature) cHCECs or CD44++/+++ cell-state transition (CST) cHCECs. The expression profiles of cations/anions, monocarboxylic acid transporters (MCTs), and solute carrier (SLC) family proteins, as well as carbonic anhydrases (CAs), were investigated.

Purpose

To clarify the expression profiles of ion channels and transporters of metabolic substrates among heterogeneous cultured human corneal endothelial cells (cHCECs) distinct in their effectiveness in reconstituting the corneal endothelium.

Results

The polarized expression of cations/anions, MCTs, and SLC family proteins, as well as CAs, was clarified for mature and CST cHCECs. Most SLC4 family members, including SLC4A11 and SLC4A4 (NBCe1), were upregulated in the CST cHCECs, whereas SLC9A1 (Na+/H+ exchanger isoform one [NHE1]) and CA5B were detected only in the mature cHCECs. In addition, SLC25A42, catalyzing the entry of coenzyme A into the mitochondria, and SLC25A18, functioning as a mitochondrial glutamate carrier 2 (both relevant for providing the substrates for mitochondrial bioenergetics), were selectively expressed in the mature cHCECs. Conclusions: Our findings may suggest the relevance of qualifying the polarized expression of these ion channels and transporter-like proteins to ensure not only the suitability but also the in vivo biological functionality of cHCECs selected for use in a cell-injection therapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。