Abstract
Matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) has shown its great success in the qualitative analysis of a wide range of organic and biological molecules. However, its application in quantitative analysis is still limited by the difficulty in the availability of isotope-labeled internal standards. The present work investigates the relationship between the correlation coefficient of the peak intensities of analyte and candidate internal standard ions and the linearity of possible quantitative analysis. Based on the two analyte examples, ciprofloxacin and substance P, the results show that the performance of the selected nonisotope-labeled internal standard is greatly related to the correlation coefficient. A high positive correlation coefficient (>0.7) between the ions of analyte and candidate standard can result in a good linearity (R 2 > 0.98) and vice versa. The results provide a new way to select nonisotope-labeled internal standards for MALDI analysis and thus can be potentially applied in the rapid quantitative mass spectrometry.
