Artificial Cell-Mediated Photodynamic Therapy Enhanced Anticancer Efficacy through Combination of Tumor Disruption and Immune Response Stimulation

人工细胞介导的光动力疗法通过肿瘤破坏和免疫反应刺激相结合增强抗癌功效

阅读:9
作者:Jiang Ni, Ying Sun, Jinfang Song, Yiqing Zhao, Qiufang Gao, Xia Li

Abstract

Recent studies have identified photodynamic therapy (PDT) as a promising approach for cancer treatment. Here, in this study, we have constructed cancer cell membrane (CCM)-coated silica nanoparticles (SIL) as an artificial cell carrier (CCM/SIL) to effectively deliver chlorin e6 (Ce6), a commonly adopted photodynamic reagent (CCM/SIL/Ce6), to achieve enhanced PDT of cancer. In addition, apart from the generally recognized cytotoxicity induced by reactive oxygen species (ROS), our study also revealed that ROS could further potentiate the loss of intercellular junctions and integrity disruption as a result of down-regulation of VE-cadherin and CD31. Consequently, dendritic cells (DCs) were more readily accumulated to the tumor tissue and became maturated, which secreted tumor necrosis factor-α and interleukin-12 (IL-12) to trigger the following immune responses. Our work not only explored the anticancer feasibility of a new system but also demonstrated the underlining mechanisms responsible for PDT-induced anticancer effects, which offers a new perspective to employ and improve the efficacy of PDT and related systems.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。