Persistent arsenate-iron(iii) oxyhydroxide-organic matter nanoaggregates observed in coal

煤中观察到持久性砷酸盐-铁(iii)氧化物-有机物纳米聚集体

阅读:8
作者:Yinfeng Zhang, Shehong Li, Jing Sun, Benjamin C Bostick, Yan Zheng

Abstract

Understanding how natural nanoaggregates of iron (Fe) and organic matter (OM), currently identified in organic rich soil or peat, interact with metals and metalloids is environmentally significant. Coal is also organic-rich and exemplifies anoxic sedimentary environments with Fe usually as pyrite and not oxides. Here, we analyze the local structure of Fe (6880-21 700 mg kg-1) and As (45-5680 mg kg-1) in representative Guizhou coal samples using X-ray absorption near-edge structure and extended X-ray absorption fine structure (XANES and EXAFS) to illustrate how Fe(iii) and As(v) are preserved in coal formed from reduced, organic-rich precursors. Arsenic XANES indicates that >80% of As exists as As(v) with <14% of As associated with sulfides in 5 Guizhou coal samples, confirming published but unexplained results. An As-Fe shell at 3.25-3.29 Å in the As EXAFS suggests that this As(v) is adsorbed on Fe(iii) oxyhydroxides as evidenced by Fe EXAFS in these coal samples. Significantly, lower Fe-Fe coordination numbers (CN) of 0.6-1.1 relative to those in 2-line ferrihydrite (CN = 1.6) and goethite (CN = 2.1) suggest that these Fe(iii) oxyhydroxides are likely Fe-OM nanoaggregates protected by OM encapsulation and adsorption of arsenate. Such structurally stabilized composites of As(v)-Fe(iii)-OM may be more widely distributed and allow oxidized As and Fe to persist in other organic-rich, reducing environments.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。